[bookmark: _GoBack]Self Check ch 10
1) What is the purpose of the JTextComponent class in Figure 2? 
Answer: To express the common behavior of text variables and text components. 
2) Why don’t we place the addInterest method in the BankAccount class? 
Answer: Not all bank accounts earn interest.
3) Which instance variables does an object of class SavingsAccount have? 
Answer: Two instance variables: balance and interestRate. 
4) Name four methods that you can apply to SavingsAccount objects. 
Answer: deposit, withdraw, getBalance, and addInterest. 
5) If the class Manager extends the class Employee, which class is the superclass and which is the subclass? 
Answer: Manager is the subclass; Employee is the superclass. 
6) Categorize the methods of the SavingsAccount class as inherited, new, and overridden. 
Answer: The SavingsAccount class inherits the deposit, withdraw, and getBalance methods. The addInterest method is new. No methods override superclass methods. 
7) Why does the withdraw method of the CheckingAccount class call super.withdraw? 
Answer: It needs to reduce the balance, and it cannot access the balance variable directly. 
8) Why does the deductFees method set the transaction count to zero? 
Answer: So that the count can reflect the number of transactions for the following month. 
9) Why didn’t the SavingsAccount constructor in Section 10.2 call its superclass constructor? 
Answer: It was content to use the default constructor of the superclass, which sets the balance to zero. 


10) When you invoke a superclass method with the super keyword, does the call have to be the first statement of the subclass method? 
Answer: No — this is a requirement only for constructors. For example, the SavingsAccount.deposit method first increments the transaction count, then calls the superclass method.
11) Why did the second parameter of the transfer method have to be of type BankAccount and not, for example, SavingsAccount? 
Answer: We want to use the method for all kinds of bank accounts. Had we used a parameter of type SavingsAccount, we couldn’t have called the method with a CheckingAccount object. 
12) Why can’t we change the second parameter of the transfer method to the type Object? 
Answer: We cannot invoke the deposit method on a variable of type Object.
13) If a is a variable of type BankAccount that holds a non-null reference, what do you know about the object to which a refers? 
Answer: The object is an instance of BankAccount or one of its subclasses. 
14) If a refers to a checking account, what is the effect of calling a.transfer(1000, a)? 
Answer: The balance of a is unchanged, and the transaction count is incremented twice. 
15) Should the call x.equals(x) always return true? 
Answer: It certainly should — unless, of course, x is null. 
16) Can you implement equals in terms of toString? Should you? 
Answer: If toString returns a string that describes all instance variables, you can simply call toString on the implicit and explicit parameters, and compare the results. However, comparing the variables is more efficient than converting them into strings. 
17) How many Java source files are required by the investment viewer application when we use inheritance to define the frame class? 
Answer: Three: InvestmentFrameViewer, InvestmentFrame, and BankAccount. 
18) Why does the InvestmentFrame constructor call setSize(FRAME_WIDTH, FRAME_HEIGHT), whereas the main method of the investment viewer class in Chapter 9 called frame.setSize(FRAME_WIDTH, FRAME_HEIGHT)? 
Answer: The InvestmentFrame constructor adds the panel to itself.
